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Abstract

The effect of soil property uncertainties on permafrost thaw projections are studied
using a three-phase subsurface thermal hydrology model and calibration-constrained
uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil
hydrothermal parameter combinations that are consistent with borehole temperature5

measurements at the study site, the Barrow Environmental Observatory. Each
parameter combination is then used in a forward projection of permafrost conditions for
the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the
Community Earth System Model (CESM) in the Representative Concentration Pathway
(RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for10

the evaluation of intra-annual uncertainty due to soil properties and the inter-annual
variability due to year to year differences in CESM climate forcings. After calibrating
to borehole temperature data at this well-characterized site, soil property uncertainties
are still significant and result in significant intra-annual uncertainties in projected active
layer thickness and annual thaw depth-duration even with a specified future climate.15

Intra-annual uncertainties in projected soil moisture content and Stefan number are
small. A volume and time integrated Stefan number decreases significantly in the
future climate, indicating that latent heat of phase change becomes more important
than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw
depth-duration, and Stefan number are highly dependent on mineral soil porosity, while20

annual mean liquid saturation of the active layer is highly dependent on the mineral
soil residual saturation and moderately dependent on peat residual saturation. By
comparing the ensemble statistics to the spread of projected permafrost metrics using
different climate models, we show that the effect of calibration-constrained uncertainty
in soil properties, although significant, is less than that produced by structural climate25

model uncertainty for this location.
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1 Introduction

Increasing Arctic air and permafrost temperatures (Serreze et al., 2000; Jones and
Moberg, 2003; Hinzman et al., 2002; Romanovsky et al., 2007), the resulting increase
in the thickness of soil that thaws on an annual basis (Romanovsky and Osterkamp,
1995), and the potential for greenhouse gas release due to the ensuing decomposition5

of previously frozen organic carbon (Koven et al., 2011; Schaefer et al., 2011) provide
motivation for developing robust numerical projections of the thermal hydrological
trajectory of Arctic tundra in a warming climate. Projections of permafrost thaw and the
associated potential for greenhouse gas release from the accelerated decomposition
of previously frozen carbon are subject to several sources of uncertainty, including10

(but not limited to) structural uncertainties in the climate models; uncertainty about the
model forcings/inputs in the future (scenario uncertainty in the typology of Walker et al.,
2003); parametric uncertainties in soil and surface properties that control the downward
propagation of thaw fronts; and structural uncertainties in the surface and subsurface
thermal hydrological models.15

Previous efforts to characterize uncertainty in permafrost thaw projections have
mostly focused on climate model structural uncertainties and climate scenario
uncertainties, presumably because of an implicit assumption that those two sources
of uncertainty overwhelm the other sources. However, recent large-scale model
comparisons suggest that a substantial portion of projected permafrost uncertainties is20

a result of structural model differences in land surface/subsurface schemes (Slater and
Lawrence, 2013; Koven et al., 2013), particularly how subsurface thermal hydrologic
processes are represented (Koven et al., 2013) rather than simply climate variation.
Although those studies focused on structural uncertainty in surface and subsurface
models and not on soil property uncertainty, the reported sensitivity to the subsurface25

model suggests that uncertainty in soil properties may also contribute significantly to
overall uncertainty in thaw projections.
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The bulk hydrothermal properties of soil that control the active layer thickness (ALT,
i.e. the depth of soil that thaws on an annual basis) (Neumann, 1860; Stefan, 1891;
Romanovsky and Osterkamp, 1997; Peters-Lidard et al., 1998; Kurylyk et al., 2014)
vary among sites and locally within a single site, in particular being sensitive to the local
organic matter content and bulk porosity (Letts et al., 2000; Price et al., 2008; O’Donnell5

et al., 2009; Hinzman et al., 1991; Chadburn et al., 2015). Langer et al. (2013) identify
the soil composition uncertainties, particularly the soil ice/water content, to have the
largest effect on ALT. Intermediate to large-scale thermal simulations of ALT are known
to be sensitive to soil properties (Hinzman et al., 1998; Rawlins et al., 2013). Because
of this sensitivity, large-scale Earth System Models (ESMs) were recently updated10

to include layers of moss and peat in order to better represent subsurface thermal
conditions (Beringer et al., 2001; Lawrence and Slater, 2008; Subin et al., 2012).
Despite the recognition of soil property uncertainty and heterogeneity as important
contributors to uncertainties in permafrost conditions and extent, global and regional
studies that address permafrost future conditions and extent typically apply broad15

soil texture classifications, such as those defined by Clapp and Hornberger (1978)
and Cosby et al. (1984), to parameterize soil properties (Lawrence and Slater, 2008),
usually without consideration of soil property uncertainty (Lawrence and Slater, 2005;
Hinzman et al., 1998; Shiklomanov et al., 2007; Koven et al., 2013; Rinke et al., 2008).

Soil property uncertainty is different from many other sources of projection20

uncertainty (e.g. climate scenario uncertainty) in that uncertainties in soil properties
may be reduced by a combination of site characterization (Hinzman et al., 1998) and
model calibration (Romanovsky and Osterkamp, 1997; Nicolsky et al., 2009; Jiang
et al., 2012; Atchley et al., 2015). Initial steps in that direction have been taken.
For example, Romanovsky and Osterkamp (1997) calibrate thermal soil properties25

using a purely conductive thermal model using measured temperatures at several
sites and Nicolsky et al. (2009) perform a sensitivity analysis of a calibration (data
assimilation) approach to identify its ability to recover thermal soil properties using
a 1-D thermal model and apply the calibration approach to several sites. Atchley
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et al. (2015) recently demonstrated an iterative approach for using site characterization
data to simultaneously refine thermal hydrology model structure and estimate model
parameters. Their approach was applied to the Barrow Environmental Observatory, but
could be used at other sites to improve model structure and parameter assignments in
the regional or global context.5

Recognizing that permafrost projections are sensitive to subsurface model
representations and that soil property uncertainties may be reduced through
characterization and parameter estimation, a natural next step is to quantify how such
activities will impact overall uncertainties in permafrost thaw projections in comparison
to other sources of uncertainty. Here we address that question. Specifically, we10

consider how uncertainties in soil hydrothermal properties propagate to uncertainties
in numerical projections of permafrost thaw at a well-characterized site. We go
beyond a traditional unconstrained uncertainty quantification and focus on the residual
uncertainties that remain after soil parameters have been carefully calibrated to
borehole temperature data. The intent of the current work is to develop initial insights15

into how effective site characterization activities might be at reducing uncertainties
associated with soil parameters. We show that with future climate specified and with the
advantage of calibration targets from a well-characterized site, significant uncertainties
remain in projected ALT and other metrics important for carbon decomposition in the
future climate. We show that this residual uncertainty is significant, albeit less than that20

associated with uncertainties in future climate.
The methodology is described in Sect. 2. A brief description of our thermal

hydrology process model is presented in Sect. 3. The generation of the ensemble
of calibration-constrained parameter combinations is described in Sect. 4. Permafrost
thaw projection metrics are described in Sect. 5. The predictive uncertainty and25

trends in permafrost thaw projections are presented in Sect. 6. Section 7 presents
the comparison of soil property and climate model uncertainty. A correlation analysis
identifying the level of dependence between soil parameters and projection metrics is
presented in Sect. 8. Conclusions and discussion of the analysis are in Sect. 9.
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2 Methodology

We use the Arctic Terrestrial Simulator (ATS) to numerically solve the coupled
groundwater flow, thermal, and surface energy balance equations. The uncertainty
quantification is performed around a previous calibration by Atchley et al. (2015).
Atchley et al. (2015) used 1-D column models representing the dominant5

microtopographical features (center, rim, and trough of polygonal ground) to calibrate
hydro-thermal soil parameters using soil temperatures at the Barrow Environmental
Observatory (BEO) measured by the Next Generation Ecosystem Experiments
Arctic (NGEE-Arctic) team during calendar year 2013. The calibration considered
temperatures measured at 9 depths from 10 to 150 cm.10

The calibration was performed in a coupled fashion where each “model run” of the
calibration consisted of simulating center, rim, and trough column models with the same
soil parameter values for peat and mineral soil. This coupled calibration identifies soil
parameters that provide a generalized fit, compromising in a least squares sense to
match the data from all three models. An implicit assumption of the coupled calibration15

is that the soil properties are independent of the microtopography. Atchley et al.
(2015) first calibrated subsurface properties using 2 cm deep temperatures measured
in 2013 as Dirichlet boundary conditions and temperatures measured at the considered
depths as calibration targets. Then an additional surface/subsurface calibration was
performed to verify that the surface energy balance model is capable of producing20

surface temperatures consistent with measurements. The coupled surface/subsurface
model allows the use of future climate scenarios as model forcings to drive hydro-
thermal permafrost projections.

In order to make projections of hydro-thermal permafrost conditions, we use the
surface/subsurface model of Atchley et al. (2015). We use the Community Earth25

System Model (CESM) (Gent et al., 2011) driven by the Representative Concentration
Pathway 8.5 (RCP8.5) greenhouse gas concentration trajectory (Moss et al., 2008)
from year 2006 to 2100 as atmospheric forcings for the surface energy balance of the
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model. In this way, we hold the climate scenario constant to isolate the effect of soil
property uncertainty. RCP8.5 corresponds to a business as usual warming scenario
with 8.5 Wm−2 forcing by 2100.

We generated an ensemble of 1153 calibration-constrained parameter combinations
by the Null-Space Monte Carlo (NSMC) method (Doherty, 2004). The NSMC approach5

samples from insensitive regions of the parameter space (i.e. the null space)
determined by an eigenanalysis of parameter sensitivities calculated at the calibration
point. Based on analysis of ensemble forward simulations of the calibration year (2013)
and a convergence analysis of the 95th confidence band of simulated temperatures, we
consider all parameter combinations in the ensemble calibrated and equally consistent10

with measured temperatures.
Predictive uncertainty of projections is determined by comparison of permafrost

metrics at year 2006 and for the last decade of the projections (2091 through 2100).
The metrics include (1) ALT, (2) annual thaw depth-duration (D), (3) annual mean liquid
saturation (S l), and (4) a modified Stefan number (ST ) and are described in detail in15

Sect. 5.
To provide a reference point for the effect and magnitude of soil property uncertainty,

we also perform ATS projections forcing the energy balance model with atmospheric
projections from CESM, INM-CM4 (INM) (Volodin et al., 2010), BCC-CSM1-1 (BCC)
(Ji, 1995), MIROC (Watanabe et al., 2010), CanESM2 (CAN) (Verseghy, 1991), and20

HadGEM2-CC (HAD) (Jones et al., 2011; Bellouin et al., 2011; Collins et al., 2011)
climate models based on RCP8.5 using the calibrated soil parameters from Atchley
et al. (2015). Using the calibrated soil parameters in these simulations isolates the
effect of structural climate uncertainty. We compare permafrost projection uncertainty
due to the NSMC ensemble of soil parameters (hydrothermal soil property uncertainty)25

and to the variability between climate models (structural climate uncertainty).
The soil property uncertainty in this analysis is parametric and can be considered

aleatoric/probabilistic in nature. The climate model uncertainty is epistemic in nature
due to a lack of knowledge regarding modeling of atmospheric phenomena. These
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distinctions do limit comparisons that can be drawn between these two uncertainties.
However, the comparison is relevant for our purposes to provide a frame of reference
for soil property uncertainty to one of the other current, primary sources of permafrost
thaw uncertainty.

3 Model5

We use the ATS computer code to simulate surface/subsurface thermal hydrology
processes. ATS is an integrated thermal hydrological code developed specifically for
Arctic permafrost applications. It implements the modeling strategy outlined by Painter
et al. (2013) using the multiphysics framework Arcos (Coon et al., 2015b) to manage
model complexity in process rich simulations such as these. Various components10

of ATS have already been described elsewhere, therefore, only a brief summary is
provided here.

In the subsurface, the ATS solves nonlinear conservation equations for water
and energy, using a three-phase (air-water-ice), single-component representation
(Karra et al., 2014), which is a simplification of a more general two-component15

(water and representative gas phase) model (Painter, 2011). A recently developed
constitutive model (Painter and Karra, 2014) is used to partition water between ice and
liquid phases in unsaturated or saturated conditions. The partitioning model relates
unfrozen water content below the nominal freezing point to the unfrozen soil moisture
characteristic curve, thus avoiding empirical freezing curves. The model has been20

successfully compared to a variety of laboratory experiments on freezing soils (Painter
and Karra, 2014; Karra et al., 2014; Painter, 2011). Surface boundary conditions
use a “fill and spill approximation”, where we allow up to 4 cm of water to pond
on the surface; all additional ponded water may run off the domain. The surface
and subsurface thermal hydrology systems are coupled using continuity of pressure,25

mass flux, temperature, and energy flux, in a thermal extension of the coupling
strategy presented in Coon et al. (2015a). Additionally, we use a surface energy
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balance (Hinzman et al., 1998; Ling and Zhang, 2004; Atchley et al., 2015) in which
surface latent and sensible heat, incoming and outgoing radiation, and conducted
heat terms, along with incoming precipitation and outgoing evaporation are tracked.
Finally, a dynamic, single-layer snow model is incorporated for tracking snow aging
and consolidation, with resulting effects on albedo and melt (Atchley et al., 2015). Not5

represented within this system are carbon cycle and vegetation processes, including
long-term changes of peat composition, variability in peat thickness, and evolving
microtopography due to degradation of ice wedges.

The subsurface domain is represented by a 2 cm layer of moss, followed by a 10 cm
layer of peat, and approximately 50 m mineral soil layer. The required climate forcings10

for the ATS models are precipitation of snow and rain, air temperature, wind speed,
relative humidity, and incoming short and longwave radiation.

4 Creation of ensemble of soil parameter combinations

In order to determine the effect that calibration-constrained soil property uncertainty
can have on long term projections of permafrost conditions, we performed an15

uncertainty quantification around the calibrated soil parameters of Atchley et al. (2015).
The strategy involved identifying a representative set of parameter combinations that all
produce simulated temperatures that are consistent with observed temperatures. We
use Null-Space Monte Carlo (NSMC) (Tonkin and Doherty, 2009), a form of calibration-
constrained Monte Carlo, to accomplish this goal. NSMC was selected based on its20

sampling economy given the computational burden of the simulations involved.
A subset of the 16 soil parameters from the calibration of Atchley et al. (2015) are

included here and presented in Table 1. The top pressures of the center and trough
profiles from the calibration (parameters toppresctr and topprestrg in Atchley et al.,
2015) are not included here as these are internally calculated in the surface/subsurface25

ATS model. The van Genuchten water retention parameters (αvgpeat, αvgmin, mvgpeat,
mvgmin in Atchley et al., 2015) are not included either as they were found to significantly

3359

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

exceed their physical boundaries during NSMC sampling. This is an indication that
these are highly insensitive parameters and do not significantly effect simulated
temperatures. This may be explained by the fact that these parameters control the
shape of the water retention curve, but that this influences thermal properties of the
soil only for a limited time near freeze-up or thaw.5

This leaves the 10 soil parameters listed in Table 1. The parameters Θr,peat and Θr,min
are van Genuchten soil moisture characteristic residual saturations (Van Genuchten,
1980). Kpeat and Kmin are thermal conductivities for peat organic matter and mineral
grains within the soil layers. These are not bulk thermal conducitivities for the soil
layers, but are used in their calculation. Apeat, fr, Apeat, un, Apeat, fr, and Apeat, un are10

emperical exponents describing the dependence of frozen (fr) and unfrozen (un)
Kersten numbers (i.e. ratios of partially to fully saturated thermal conductivities) to ice
and liquid saturation states, respectively (Painter, 2011). Bulk thermal conductivities for
peat and mineral soil layers are calculated within ATS using the Material Component
model defined by Atchley et al. (2015) with the parameters listed in Table 1. The15

minimum and maximum parameter boundaries are modified from the calibration for
the NSMC sampling (the parameter ranges are reduced in most cases) to physical
limits identified through literature review and field observations from the BEO (Hinzman
et al., 1991, 1998; Lawrence and Slater, 2008; Letts et al., 2000; Beringer et al., 2001;
Overduin et al., 2006; O’Donnell et al., 2009; Quinton et al., 2000; Nicolsky et al., 2009;20

Zhang et al., 2010).
To a lesser degree, other parameters were also found to exceed their physical

boundaries during NSMC sampling. Therefore, we used the intersection of the null
space and parameter boundaries as our criterion to accept samples. The generation
of 20 000 samples within the null space resulted in 1153 samples within the parameter25

boundaries. Samples outside of the parameter boundaries were discarded.
Figure 1 presents histograms while Fig. 2 presents paired plots of the NSMC

ensemble soil parameters. In the matrix of plots in Fig. 2, parameter histograms are
plotted along the diagonal (also presented in greater detail in Fig. 1), paired scatterplots
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in the lower triangle, and Pearson correlation coefficients are presented in the upper
triangle. In Fig. 1, it is apparent that Kpeat followed by Apeat, un are the most constrained
parameter by the NSMC analysis. The rest of the parameters span significant portions
of their range. This indicates that their are many combinations of parameters that result
in calibrated temperatures. Many of the histograms are seen to butt up against their5

boundaries, indicating that these are parameters where the extent of the null space
exceeds their range.

The correlations imposed by the NSMC sampling are evident by inspecting the
Pearson correlation coefficients and scatterplots in Fig. 2. The strong correlations
that are present are a result of a balancing act between parameters to achieve10

a least squares fit to measured temperatures. For example, the relatively strong
negative correlation between Kpeat and Kmin (correlation of −0.81) is due to the fact
that deeper temperatures in the soil profiles are controlled by the effective thermal
conductivity. Therefore, there are numerous (negatively correlated) combinations of
Kpeat and Kmin that produce similar effective thermal conductivities resulting in good15

matches to measured temperatures. Many other correlated parameter pairs are also
apparent, most with significantly lower correlations. There are also many uncorrelated
parameter pairs (e.g. φpeat and Kpeat) indicating a complete lack of interaction between
the parameter pairs. The following analysis of permafrost projection uncertainty is
conditional on the NSMC correlations presented here, and any conclusions take these20

correlations into account. References to Fig. 2 are made in the following sections
explaining some of the impacts of these correlations.

The range in RMSE values is from around 0.55 to 0.65 ◦C. The accuracy of the
temperature probes are ±0.02 ◦C. Therefore, the percentage of the RMSE that may be
attributable to measurement imprecision is around 2–3 %.25

Figure 3 presents the 95 % confidence band of temperatures for the NSMC
ensemble. Figure 4 presents the convergence analysis for the NSMC ensemble based
on the confidence band inclusion ratio (i.e. the ratio of measured temperatures within
the 95th% confidence band of the ensemble simulated temperatures). The relatively
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stable confidence band inclusion ratio after around 800 ensemble members indicates
that the ensemble has converged and that more samples are not necessary. The
measured temperatures are within the 95 % confidence band 79 % of the time for
the center, 59 % for the rim, 46 % for the trough, and 61 % overall. The primary
causes of these discrepencies are due to difficulties in capturing trends that are not5

purely random. The low values are primarily due to the 95 % confidence band missing
measured values at deep measurements apparent in Figs. A1–A3 in Appendix . A lack
of overlap is apparent during thawing (around day of year 150) and freeze-up (around
day of year 320), and is particularly evident in the rim profile in Fig. 3. Many physical
processes may be leading to this result. For one, the exposed sides of the rim and10

subsequent lateral heat flow are not explicitly modeled and may at least partially explain
the discrepency. During the thaw, a lack of advective transport of heat by liquid water
through the pore space created by sublimation during the winter (not included in the
model) may result in warmer measured temperatures.

NSMC conventionally involves a recalibration step, where a few Levenberg-15

Marquardt iterations are applied to each NSMC sample, often using existing
sensitivities from the calibration point. Based on the RMSE values of the ensemble
and the percentages of measured temperatures within the 95 % confidence band, we
consider all the unmodified NSMC samples to be calibrated and do not apply this step.
These observations also led to the assumption that all NSMC samples are equally20

consistent with measured temperatures as opposed to using a weighting scheme.
An initial ensemble created using Latin Hypercube Sampling with 1000 samples

postprocessed to include parameter combinations with RMSE’s below various
thresholds indicated that to achieve a convergent ensemble using Latin Hypercube
Sampling would be computational prohibitive. An additional NSMC analysis was25

performed with a more restrictive null space (only 2 eigenvectors out of 10 included
in the null space). This ensemble did not require postprocessing based on RMSE,
since all the RMSE values were deemed sufficiently small. This analysis resulted in
over-correlated parameters. We therefore chose a loosely constrained NSMC (5 out
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of 10 eigenvectors included in the null-space) excluding samples with RMSE greater
than 0.65 ◦C. We considered other RMSE cutoffs, but selected 0.65 ◦C based on
compromising between increasing the confidence band inclusion ratio and ensuring
that simulated temperatures for 2013 were as consistent near the active layer base as
possible across the ensemble. ALT in 2013 was around 40 cm (refer to Figs. A1–A3).5

The projection simulations took on the order of several hours (∼ 2–4 h) on a Linux
cluster with 3.2 GHz processors. We used the Model Analysis ToolKit (MATK) Python
module (http://matk.lanl.gov) to facilitate the concurrent execution of the ensemble of
ATS models on high performance computing clusters.

5 Permafrost metrics10

5.1 Active layer thickness (ALT)

Permafrost is traditionally defined as the region of the subsurface that remains at or
below 0 ◦C for two or more years. The ALT defined that way would be the minimum of
the maximum annual thaw depth over each two year moving window. We use a less
arbitrary definition for the ALT here as the annual maximum thaw depth, similar to15

Koven et al. (2011). Given the discrete nature of our mesh, and the nonlinear nature
of vertical soil temperature profiles near 0 ◦C, we determine ALT as the bottom of the
deepest thawed mesh cell (temperature above 0 ◦C) for the year.

5.2 Annual thaw depth-duration (D)

ALT controls the amount of organic carbon experiencing thaw and thus microbially20

induced decomposition during a year. Because ALT is defined as the maximum thaw
depth, it does not include information on duration of thaw. To quantify increasing
duration of thaw in future climate as well as increasing depth, a new metric is introduced
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here: the mean annual thaw depth D, defined as

D =
1

365

∫ ∫
H(T (z,t))dzdt (1)

where H is the heavyside function (1 if T (z,t) is above 0 ◦C, 0 otherwise), z is depth in
meters, and t is time in days. The fraction on the right side of Eq. (1) normalizes the
metric by the 365 days in a year. We express D with units of m3 m−2 to indicate that this5

metric defines the volume of thawed soil per unit area. Of course, this can be reduced
to simply meters, however, it must be recognized that the metric is averaged over the
entire year including while the soil column is completely frozen. D is a rough proxy for
the potential for soil organic matter decomposition. It merges the amount of unfrozen
soil and duration that soil is above freezing for a given year. It is noted that, while the10

annual amount of decomposition is likely correlated with D, the two quantities are not
directly proportional because soil temperature and moisture will also change and affect
the decomposition rates in future climates. In addition, the soil organic matter content
in soils generally decreases with depth, which is not accounted for in the D metric.
Nevertheless, uncertainty in D is of interest as it is an important control on uncertainty15

in future decomposition rates.

5.3 Annual mean liquid saturation (Sl)

The annual mean liquid saturation S l is defined as

S l =

∫∫
H(T (z,t))Sl(z,t)dzdt
∫∫
H(T (z,t))dzdt

. (2)

S l quantifies the spatially and temporally averaged liquid saturation in the unfrozen soil20

for a given year. Note that the denominator in Eq. (2) is the annual thaw depth-duration
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metric D from above, except without dividing by 365. While frozen soil (i.e. soil below
0 ◦C) in our models contain a residual liquid saturation, this is not included in S l (refer
to Eq. 2). Liquid saturation within the active layer is of interest because of its control
on decomposition rates. In particular, decomposition may be slower in dry conditions,
and oxygen limitations in saturated or nearly saturated conditions may cause methane5

production to be favored over CO2 production. Therefore, S l provides an indication of
the potential rate of decomposition as well as an indication of the chemical form of the
resulting greenhouse gas produced in the active layer.

5.4 Stefan number (ST )

We propose an extension of the Stefan number from the form in Kurylyk et al. (2014)10

to one that incorporates intra-annual temporal changes and stratified soil properties.
The Stefan number is the ratio of subsurface sensible to latent heat. In the current
context, this refers to the amount of subsurface heat exchange that results in a change
in temperature vs. the amount that is consumed in the isothermal conversion of ice to
liquid water. In its most basic form, the Stefan number is defined as15

ST =
cb∆T
Lf

. (3)

where cb is the bulk specific heat of the material and Lf is the latent heat of fusion
of water (334 000 Jkg−1). Kurylyk et al. (2014) define the Stefan number for the
permafrost problem as

ST =
cbρb(Ts − Tf)

SwfρwφLf
(4)20

where ρb is the density of the thawed zone, Ts is the surface temperature, Tf is the
temperature of freezing or thawing soil (taken as 0 ◦C), Swf is the liquid saturation in
the thawed zone that was frozen, and ρw is the density of liquid water. Kurylyk et al.
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(2014) use this definition to evaluate the thermal regime of analytical solutions of soil
thaw. We expand this definition here to include the increased detail available in our
numerical simulations as

ST =

∫∫
cb(z)ρb(z) H

(dT
dt

) dT
dt dzdt

ρiceLf

∫∫
H
(
−dSice

dt

)(
−dSice

dt

)
φ(z)dzdt

(5)

where Sice is ice saturation. The integrations are performed over the entire year (i.e.5

from 1 January through 31 December). Equation (5) expands on Eq. (4) to allow
the consideration of details of transient heating and cooling throughout the year and
stratified hydrothermal soil properties within the soil profile.

6 Permafrost thaw projection uncertainty

Figure 5 present boxplots of permafrost metrics for the first year (2006) and the10

last decade (2091–2100) of the projections. Individual boxplots for each year present
the intra-annual predictive uncertainty, while comparisons between boxplots for each
metric indicate the inter-annual variability of the projections for the specified climate
scenario. We present the first year as an indication of the intra-annual uncertainty at
the beginning of the projections.15

Boxplots of ALT are shown in Fig. 5a. The median ALT increased from approximately
30 cm in 2006 to nearly 0.9 m by the end of the century. The intra-annual uncertainty
in ALT also increases significantly from the beginning to later years of the projections.
The intra-annual variability of ALT projections is dependent on climate, as warmer years
(e.g. 2094) have greater ALT and larger uncertainty than cooler years. This is apparent20

in Fig. 6 where the ensemble thaw depth statistics (median and 95 % confidence band)
and CESM8.5 air temperature times series are plotted together for comparison.

Boxplots of annual thaw depth-duration (D) are presented in Fig. 5b. The intra-annual
uncertainty in D during the last decade of the projections is significantly greater than
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for the first year (2006). As expected, the inter-annual trends in D and ALT are similar.
Also, the uncertainty of D is relatively larger during warmer years than cooler years,
similar to ALT.

Boxplots of the annual mean liquid saturation (S l) are presented in Fig. 5c. The intra-
annual uncertainty in S l actually decreases slightly from the first year to the last decade.5

Also, in general, the last decade is slightly wetter than 2006, but only marginally so.
Therefore, this hydrothermal analysis does not indicate that the partitioning of carbon
decomposition between CO2 and CH4 will change significantly as permafrost thaws.
However, other factors affecting carbon decomposition not considered here could affect
the partitioning of carbon decomposition end products.10

Boxplots of the Stefan number (ST ) are presented in Fig. 5d. In 2006 the soil profiles
for the majority of the ensemble are latent heat dominated. However, some Stefan
numbers are greater than 1, with values ranging from around 0.3 to 1.4 (from around 3
times the latent heat as sensible heat to 1.4 times the sensible as latent heat). However,
by the last decade, nearly all Stefan numbers are 0.2 or less (at least 5 times as much,15

and up to 20 times as much latent heat as sensible heat). This indicates a fundamental
change in the way that the active layer processes energy between the beginning
and later years of the projections. The thermal regime of the active layer becomes
significantly more dominated by latent heat during the projections. The amount of
energy that is utilized in creating a temperature gradient in the soil profile becomes20

proportionately smaller compared to the amount of energy consumed in the isothermal
melting of ice. This is at least partially due to the approximately 3 times increase in the
quantity of ice that is melted during later years of the projections. Perhaps the most
significant result of this change is the temperature regime of the underlying permafrost
in decreased seasonal temperature variations and their depth of penetration. Intra-25

annual uncertainty appears to decrease from 2006 compared to the last decade, but
this is likely due to the Stefan number approaching its lower limit.

To further illustrate intra-annual uncertainty of the ALT projections, temperature
profiles at the time of ALT for year 2100 are presented in Fig. 7. Summary statistics
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(median and 5th and 95th percentiles) for 2006 are presented for reference. The
discrete surface temperatures categorized by day of year (colors) reflect the fact that
the surface temperature is highly dependent on the climate/air temperature, which
is the same for all projections. The increase in median ALT from around 30 cm to
around 0.9 m from 2006 to 2100 is also apparent in this figure. The difference in the5

temperature regime within the profile is apparent in these figures as well by the curve
near the surface in most of the profiles in 2100 compared to 2006. This indicates that as
the climate warms and the day of year when ALT occurs becomes later in the year (day
of year ALT occurs in 2006 projections is from 246 to 260), the surface temperature at
that time will be cooler. This increase in lag time from the surface temperature to the10

active layer base is a result of the thermal wave traveling a greater distance to reach
the permafrost. This may also be due to relative changes in the temperature gradient
within the active layer and the permafrost as the ALT increases leading to delayed
freeze from below.

Figure 8 shows similar plots to Fig. 7, but in this case, statistical measures of the15

ensemble are plotted. Statistical representation of the temperature profiles in Fig. 7 are
plotted in Fig. 8a, along with bulk thermal conductivity (Fig. 8b) and ice (Fig. 8c), liquid
(Fig. 8d), and gas (Fig. 8e) saturation profiles when ALT occurs in 2006 and 2100. The
variation in thermal conductivity and saturation states further illustrates the intra-annual
projection uncertainty due solely to soil properties. Substantial shifts in intra-annual20

uncertainty are also apparent from 2006 to 2100. In Fig. 8a, it is apparent that the
thermal conductivity in the soil profile decreases from 2006 to 2100 due to the loss of
the more thermally conductive ice from the profile, thereby inhibiting the propagation
of the thermal wave. The deepening of the permafrost table is apparent in Fig. 8c as
a deepening of the ice saturated region. Note that liquid saturations for mineral soil25

remain at its residual values below 0 ◦C and that residual liquid saturations (Θr,peat and
Θr,min) are variable parameters within the uncertainty quantification (refer to Table 1). As
a result, the ice saturation within the permafrost region is variable within the ensemble.
In Fig. 8d and e, it is apparent that the liquid and gas saturations both increase as
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ice is converted to liquid and void space becomes available with the deepening of the
permafrost table.

7 Comparison to climate model structural uncertainty

In this section, we provide a frame of reference to the effect of soil property uncertainty
on permafrost thaw projections by comparison to the uncertainty currently present5

in climate models. Figure 9 presents histograms of projection metrics collected from
each ensemble sample for years 2091 through 2100 (a total of 11 530 values,
i.e. 1153 samples×10 years). This combines the intra-annual uncertainty for the last
decade of the projections. The 95 % confidence band of the calibration-constrained
ensemble for each metric is indicated by dashed vertical lines in each plot. Below10

the histograms are the values obtained using atmospheric forcing data from CESM,
INM, BCC, MIROC, CAN, and HAD climate models to drive the ATS models with the
calibrated soil parameters for the same years, 10 values each. BCC has only 9 values
as we could only obtain its data through year 2099. These values provide a sampling of
current climate model structural uncertainty due to varying assumptions and numerical15

representations of atmospheric phenomena.
Note that the CESM values lie within the support of the calibration-constrained

ensemble histograms in all cases. This is expected since the calibration-constrained
ensemble is forced using the CESM scenario. Similarly, the supports of calibration-
constrained ensemble histograms for other climate scenarios would be expected20

to encompass the calibrated soil parameter values (circles in Fig. 9) as well. This
indicates that different climate scenarios will result in different magnitudes of projection
uncertainty due to soil property uncertainty. For example, if the calibration-constrained
ensemble was simulated using MIROC, the magnitude of the projection uncertainty of
D (Fig. 9b) could be as much as 4–5 times larger than for CESM. This indicates the25

interactive effect that soil property and structural climate model uncertainties have on
projection uncertainty and that these forms of uncertainty are not easily decoupled.
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These plots present the magnitude of projection uncertainty due to only soil
property uncertainty based on CESM atmospheric projections (histograms) and to
only structural climate model uncertainty (circles). By comparing the ensemble 95 %
confidence bands for the metrics to the range of values across the climate models, it is
apparent that structural climate model uncertainty has a greater impact on projection5

uncertainty than soil property uncertianty. The ratios of the ensemble 95 % confidence
band width and the range between the minimum and maximum values for climate
models are 26 % for ALT, 9 % for D, 45 % for S l, and 80 % for ST . As explained
above, if a different climate model had been used for the ensemble calculations, these
percentages would be different.10

8 Dependence of permafrost projections on soil parameters

Figure 10 presents paired plots of calibration-constrained projections for year
2100. The diagonals are projection histograms, the lower triangle contains paired
scatterplots, and the upper triangle contains the Pearson correlation coefficients
between matrix pairs. The samples are discrete in ALT due to the mesh discretization.15

The mesh cell thickness increases with depth, and the active layer is determined as the
depth to the bottom of the deepest unfrozen cell (i.e. with a temperature above 0 ◦C).

From this figure, it is apparent that all the metrics are positively correlated. The
correlation between ALT andD is expected given the definition ofD as a metric defining
the quantity and duration of unfrozen soil. The correlation of S l to ALT is a result of20

the deeper portions of the thicker ALT scenarios having slightly increased levels of
saturation, which is apparent in the liquid saturation statistical profiles in Fig. 8d for
year 2100. The correlation between D and S l can be explained by a similar argument.
Increased levels of saturation lead to higher bulk thermal conductivy of the mineral soil
layer, resulting in thicker ALT and larger D due to increased energy flux. Correlations25

between ST and the other projection metrics indicate that as ALT increases, resulting
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in increased annual thaw depth-duration D and annual mean liquid saturation S l, the
system becomes increasingly latent heat dominated. This is due to the fact that more
energy is required to thaw greater depths of frozen soil each year.

Figures 11–14 explore correlations between the calibration-constrained parameters
and projected metrics. These figures plot scatterplots between hydro-thermal soil5

parameters and projection metrics for year 2100. The discrete nature of the samples
with respect to ALT mentioned above due to the mesh discretization is also apparent
in Fig. 11. Pearson correlation coefficients for each soil parameter/projection metric
pair are presented on each scatterplot. The points are colored by D in Fig. 11 and
by ALT in Figs. 12–14 to further illustrate the correlations between metrics already10

presented in Fig. 10. Peat parameters are presented along the left column and mineral
soil parameters along the right column of each figure.

Some strong correlations are apparent in Figs. 11–14 with coefficients greater that
0.9. Many of these correlations confirm our qualitative understanding of the model.
It is apparent that in many cases projection metrics have stronger dependencies on15

the mineral soil porosity (φmin) and residual saturation (Θr,min) parameters compared
to the corresponding peat parameters (φpeat and Θr,peat). Dependence on the other
parameters is less predictable. For example, decreasing mineral soil porosity (φmin)
increases the bulk thermal conductivity of the mineral soil due to the relatively large
thermal conductivity of the mineral soil grains, leading to larger ALT (top right plot in20

Fig. 11).
We determine linear dependency coefficients of projection metrics to calibration-

constrained parameters using ordinary least squares. We limit the analysis to soil
parameter/projection metrics exibiting moderate to strong correlation (|ρ| > 0.7). Table 2
presents the intercept and slope coefficients from the analysis, along with their25

95 % confidence intervals. All coefficients in Table 2 are significant at the 1 %
level. The coefficient of determination (R2) is presented indicating the portion of the
variance explained by the regression for each case. Note that since we use ordinary
least squares including an intercept, the R2 is simply the square of the correlation
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coefficients (ρ) presented in Figs. 11–14. Calibration-constrained parameters not
included in Table 2 resulted in regressions with R2 less than 0.5.

The slope coefficients are emphasized in bold in the table since these describe the
first-order dependence of projection metrics on the calibration-constrained parameters.
The slope coefficients describe the change in ALT given a unit change in the calibration-5

constrained parameter. For example, if φmin increases by 0.1, we would estimate that
ALT will decrease by around 0.14 m. These coefficients can be useful in gaging the
impact of soil parameter changes on projection metrics.

9 Discussion and conclusions

In summary, we extended previous calibration and model refinement work (Atchley10

et al., 2015) to quantify post-calibration uncertainty in soil properties and the impact
of that uncertainty on projections of permafrost thaw. Using a model with parameters
calibrated against data from the BEO, driving the NSMC ensemble of models using
the CESM climate model in the RCP8.5 scenario, and comparing against other climate
models in the RCP8.5 scenario, the following conclusions can be made:15

– The median ALT and annual thaw depth-duration (D) of the calibration-
constrained ensemble increase by around a factor of 3 by the end of the century.

– The effect of soil property uncertainty based on CESM atmospheric forcings
is approximately 26 % of the uncertainty caused by climate model structural
uncertainty for ALT, 9 % for D, 45 % for S l, and 80 % for Stefan number.20

– Intra-annual uncertainty of ALT and D due to soil property uncertainty increase
significantly from the first year to the last decade of the projections

– Intra-annual uncertainty of soil moisture content due to soil property uncertainty
is not significantly changed by the end of the century.
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– Intra-annual uncertainty of the Stefan number due to soil property uncertainty
decreases, but this is at least partially due to this metric approaching its lower
boundary in the last decade.

– The active layer moves to an increasingly latent heat dominated system due to
larger quantities of frozen ground thawed each year.5

– ALT, D, and ST are highly dependent on φmin, while S l is highly dependent on
Θr,min and moderately dependent on Θr,peat.

Efforts to quantify the relative roles of subsurface vs. climate and scenario
uncertainty have only recently begun. We found that the effect of soil property
uncertainties can be reduced to levels lower than the uncertainty generated by10

uncertainties in climate model structure through a process of calibration to field
observations, model structural refinement (Atchley et al., 2015), and calibration-
constrained uncertainty analysis. However, we had the advantage of data from
an unusually well-characterized site, which suggests that the residual uncertainty
identified here is close to a practical limit.15

The quantitative results shown here are specific to the site, available data, RCP
trajectory assumption, and climate model. Nevertheless, the approach presented here
is anticipated to be useful for understanding the impact that additional data collection
might have on reducing uncertainty associated with other high-latitude permafrost
sites. Potential directions for future work include the investigation on the impact20

that longer data streams and other types of observation might have on reducing
uncertainties. In particular, the calibration against borehole temperature data was
uninformative of certain water retention properties of the soils (van Genuchten α and
m parameters). Therefore, co-located measurements of soil moisture would be useful
to help constrain those parameters. Moreover, given the known spatial variability in25

soil properties across the pan-Arctic (Hinzman et al., 1998; Rawlins et al., 2013),
calibration-constrained soil property uncertainty across larger spatial scales warrants
further investigations.
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Appendix A

Figures A1–A3 present the 95th confidence band for NSMC ensemble temperatures
during the calibration year for all depths. These figures present the complete data set
from which Fig. 3 was drawn, which presents the 40 cm depth values only (near the
ALT in 2013).5
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Table 1. NSMC parameter minimum and maximum bounds, units, and descriptions.

Parameter Min Max Units Description

φpeat 0.7 0.93 – Peat porosity
φmin 0.19 0.76 – Mineral porosity
Θr,peat 0.04 0.4 m3 m−3 Peat residual liquid saturation
Θr,min 0.05 0.25 m3 m−3 Mineral residual liquid saturation
Kpeat 0.05 0.38 Wm−1 K−1 Peat thermal conductivity
Kmin 0.2 4.0 Wm−1 K−1 Mineral thermal conductivity
Apeat, fr 0.1 3.0 – Frozen peat thermal conductivity shape parameter
Apeat, un 0.1 1.5 – Unfrozen peat thermal conductivity shape parameter
Amin,fr 0.1 3.0 – Frozen mineral thermal conductivity shape parameter
Amin,un 0.1 1.5 – Unfrozen mineral thermal conductivity shape parameter
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Table 2. Linear regression intercept and slope coefficients for permafrost metrics as a function
of calibration-constrained parameters. Slope coefficients are in bold since they describe the
first-order dependence of metrics on parameters.

Metric Parameter Intercept 95 % Conf. Int. Slope 95 % Conf. Int. R2

ALT φmin 1.66 1.65–1.67 −1.39 −1.41 to −1.37 0.95

D φmin 0.465 0.462–0.468 −0.402 −0.408 to −0.397 0.95

S l Θr,peat 0.510 0.506–0.513 0.227 0.215 to 0.240 0.52
Θr,min 0.452 0.450–0.455 0.702 0.687 – 0.717 0.87

ST φmin 0.327 0.323–0.331 −0.381 −0.387 to −0.374 0.92
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Figure 1. Histograms of calibration-constrained hydrothermal soil parameter combinations.
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Figure 2. Matrix of paired plots of calibration-constrained hydrothermal soil parameter
combinations. Parameter histograms are plotted along the diagonal, paired scatterplots in the
lower triangle, and Pearson correlation coefficients in the upper triangle. The histogram counts
for all histograms are indicated along the ordinate axis of the upper left plot.

3384



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

20

10

0

10 Center

Measured

Calibrated

T=0

30

20

10

0

10 Rim

0 50 100 150 200 250 300 350
20

10

0

10 Trough

Day of Year - 2013

T
e
m

p
e
ra

tu
re

 [
o

C
]

Figure 3. Time-series of temperature at 40 cm depths for the polygonal center, rim and trough
profiles. Measured values are shown in red, calibrated in blue, and the 95 % confidence band
is the shaded blue region.
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Figure 4. Calibration-constrained ensemble convergence analysis based on the ratio of
measured temperatures within the 95 % confidence band for ensemble simulated temperatures.
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(c)

(d)

Figure 5: Boxplots of projected metrics including (a) ALT, (b) annual thaw depth-
duration, (c) annual mean liquid saturation, and (d) Stefan number for year 2006 and
from 2091 to 2100. The bottom and top of the boxes are the first and third quartiles,
the red lines are medians, the whisker lengths are 1.5 times the interquartile range
(50%), and the plus symbols are outliers.

19

Figure 5. Boxplots of projected metrics including (a) ALT, (b) annual thaw depth-duration,
(c) annual mean liquid saturation, and (d) Stefan number for year 2006 and from 2091 to 2100.
The bottom and top of the boxes are the first and third quartiles, the red lines are medians, the
whisker lengths are 1.5 times the interquartile range (50 %), and the plus symbols are outliers.
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Figure 6. Thaw depth and air temperature time series for years 2006 and 2091 through 2100.
The black line is the median thaw depth of the ensemble and the blue shaded region is the
95 % thaw depth confidence band for the ensemble.
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Figure 7. Intra-annual uncertainty due to soil properties for depth profiles of temperature for
the ensemble when ALT occurs for calendar year 2100. The 2006 median and 5th and 95th
percentiles are presented for reference. Day of year when ALT occurs for 2006 is from 246 to
260.
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(a) (b)
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(e)

Figure 8: Intra-annual predictive uncertainty due to soil property uncertainty for depth
profiles of ensemble statistical quantities when ALT occurs for calendar years 2006 and
2100. The shaded regions are the 95% confidence intervals for 2006 (red) and 2100
(blue).
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Figure 8. Intra-annual predictive uncertainty due to soil property uncertainty for depth profiles
of ensemble statistical quantities when ALT occurs for calendar years 2006 and 2100. The
shaded regions are the 95 % confidence intervals for 2006 (red) and 2100 (blue).
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(a)
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Figure 9: Comparison of (a) ALT, (b) annual thaw depth-duration, (c) annual mean
liquid saturation, and (d) Stefan number projection uncertainty due to soil property un-
certainty (histograms) and structural climate model uncertainty (circles). Histograms
include calibration-constrained ensemble values for years 2091 to 2100 (11,530 values)
based on the CESM8.5 climate scenario. Open circles below the histograms are values
for the various climate scenarios for the same years using the calibrated soil parameters
(10 values each, except for BCC which has 9). Ensemble 95% confidence band (CB)
limits are indicated as vertical dashed lines.24
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Figure 9. Comparison of (a) ALT, (b) annual thaw depth-duration, (c) annual mean liquid
saturation, and (d) Stefan number projection uncertainty due to soil property uncertainty
(histograms) and structural climate model uncertainty (circles). Histograms include calibration-
constrained ensemble values for years 2091 to 2100 (11 530 values) based on the CESM8.5
climate scenario. Open circles below the histograms are values for the various climate
scenarios for the same years using the calibrated soil parameters (10 values each, except
for BCC which has 9). Ensemble 95 % confidence band (CB) limits are indicated as vertical
dashed lines.
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Figure 10. Matrix of paired plots of calibration-constrained ensemble projections for year 2100.
Parameter histograms are plotted along the diagonal, paired scatterplots in the lower triangle,
and Pearson correlation coefficients in the upper triangle. The range of counts for all histograms
are as indicated along the ordinate axis of the upper left plot.
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Figure 11. Scatterplots between calibration-constrained parameters and projected ALT for year
2100. Soil parameters associated with peat are on the left and with mineral soil on the right.
Colors represent annual thaw depth-duration. The associated Pearson correlation coefficient
ρ is indicated in each plot. The discrete nature of the ALT is due to the computational mesh
discretization.
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Figure 12. Scatterplots between calibration-constrained parameters and projected annual thaw
depth-duration. Soil parameters associated with peat are on the left and with mineral soil on
the right. Colors represent ALT. The associated Pearson correlation coefficient ρ is indicated in
each plot.
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Figure 13. Scatterplots between calibration-constrained parameters and projected annual
mean saturation. Soil parameters associated with peat are on the left and with mineral soil on
the right. Colors represent ALT. The associated Pearson correlation coefficient ρ is indicated in
each plot.
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Figure 14. Scatterplots between calibration-constrained parameters and projected Stefan
number. Soil parameters associated with peat are on the left and with mineral soil on the right.
Colors represent ALT. The associated Pearson correlation coefficient ρ is indicated in each plot.
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Figure A1. Time-series of temperature at specific depths for the polygonal center. Measured
values from the field are shown as a red line, the mean of the NSMC sample as a blue line, and
the 95 % confidence band is the shaded light blue region.
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Figure A2. Time-series of temperature at specific depths for the polygonal rim. Measured
values from the field are shown as a red line, the mean of the NSMC sample as a blue line, and
the 95 % confidence band is the shaded light blue region.
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Figure A3. Time-series of temperature at specific depths for the polygonal trough. Measured
values from the field are shown as a red line, the mean of the NSMC sample as a blue line, and
the 95 % confidence band is the shaded light blue region.
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